562

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 5, SEPTEMBER 1983

Managing and Predicting the Costs of Real-Time
Software

ROGER D. H. WARBURTON

Abstract—The Putnam model can be used to predict and manage
software development projects. It is a management tool that takes, as
input, easily obtained manpower data and produces cost and schedule
estimates. This paper examines data from two real-time software projects
and analyzes the applicability of the Putnam model. We propose a vari-
ation of the model which more reliably follows the staffing curve of
real-time software applications. A critical analysis of the assumptions
is presented and the parameters are reinterpreted so that they reflect
the environment of embedded applications. Two projects are analyzed
from actual data, It is shown how management decisions are reflected
in the model. Even erratic and incomplete data can yield valuable con-
clusions. It is also shown that the model is appropriate to software de-
veloped with modern practices. We show how valuable management
information can be obtained by laying out the data in a systematic
manner.

Index Terms—Cost prediction, Putnam model, Rayleigh curve, real-
time software, software management.

I. INTRODUCTION

HE Putnam model is a software management tool that

can be used to predict costs and delivery schedules.! The
two most important management parameters are indeed the
projected cost of the job and the delivery data. The Putnam
model uses easily obtained manpower data, presenting it in a
manner that is easily understood. Furthermore, the two inter-
esting management parameters are clearly represented. The
effects of delays and cost overruns are easily visualized, and
their effects quantified.?

Manuscript received September 10, 1981; revised January 5, 1983.
This work was supported in part by Raytheon Submarine Signal Division
Research and Development Funding.

The author is with JAYCOR, Middletown, RI 02840.

LFor a complete description of the Putnam model see, for example,
L. H. Putnam, “A general empirical solution to the macro software sizing
and estimating problem,” IEEE Trans. Software Eng., vol. SE-4, no. 4,
July 1978.

2For a review of software cost modeling and estimation techniques,
the reader is referred to B. W. Boehm, Software Engineering Economics.
New York: Prentice-Hall, 1981.

The Putnam model uses the manpower data in different ways,
to obtain different types of predictions. Historical data on
completed projects provides a calibration database for an
organization. These data can be used to generate likely cost
and schedule estimates on future projects. For example, during
a proposal bid effort, the Putnam model can be used in a risk
analysis to assess the increased costs of a shorter schedule.

The second use of the Putnam model is in predicting costs
and schedules while a job is progressing. The model provides
realistic projections that can be compared with actual mile-
stones.

In this paper we discuss the application of the model to real-
time software applications. The standard model is found to be
deficient in certain areas, but a reinterpretation of some of the
parameters has allowed us to use it to describe the real-time
software development process.

A. The Putnam Model and Its Assumptions

The first step in using the Putnam model is to plot the num-
ber of people working on a project as a function of time. Fig. 1
is an example of such a plot. The curve shows that the people
are assigned to the project, starting with relatively few during
software design. The manpower reaches a peak and falls off,
the decrease in manpower during testing is slower than the
earlier build up.

The first assumption of the Putnam model is that all soft-
ware projects follow this type of curve, and that the curve is
characterized by a Rayleigh distribution. The Putnam model
then proceeds as follows: the entire manpower curve is supposed
to be Rayleigh shaped, with several subcycles. Early require-
ments work is not included in the manpower curve (represented
in Fig. 1 as a dashed line). '

The first major subcycle is the detail design and code cycle,
which is also supposed to follow a Rayleigh curve. The man-
power is supposed to peak around the time of the first system

0098-5589/83/0900-0562$01.00 © 1983 IEEE

WARBURTON: COSTS OF REAL-TIME SOFTWARE

REQUIREMENTS WORK

PROJECT CURVE

PLANNING AND
MODIFICATIONS

-\ \
Y, N DESIGN TEST AND
/ AND CODE VALIDATION MAINTENANCE
/
/

Fig. 1. Manpower curve subcycles. This figure describes the subcycles
that are assumed to make up the software life cycle. Planning and re-
quirements work is not usually included in the Putnam model.

21
18|
m
o
-
Z 15t
w
-
S
Q 12
'Y
w
o
& °r
]
=
2
Z 6f
3
0 1 | 1 1 1

JAN 1977 JUNE 1977 JAN 1978 JUNE 1978 JAN 1979 MAY 1979

Fig. 2. This figure shows the manpower data for a real-time software
- project. Even without knowing the Putnam model, predictions can
easily be made from this type of curve. Significant fluctuations reflect
management problems. (1) Customer funding problems. (2) Winter

563

holidays and snowstorms. (3) Psychological trap of running out of
money. (4) Subsequent build-up to correct previous problem.

delivery, which occurs at approximately 40 percent of total
budget. This is often followed by a long series of modifications
and upgrades which constitute 60 percent of the total project
expenditure. This peaking of manpower at the prototype de-
livery stage is a weak assumption. ‘ '

In data processing applications, it is often true that the life
of a program proceeds in this way. For example, the author
observed a bank statement program when it first became opera-
tional—it was usable and yet far from its final form. The bank
statement formats changed from month to month. The state-
ment format grew in complexity and sophistication for about
six months, and was then stable for several months. Since
then it has undergone several upgrades as banking conditions
have changed. ‘

This is to be contrasted with a tactical embedded program in
which the software has to meet strict specifications or delivery
will not.be accepted. Delivery thus marks the end of a project.
By the time a tactical system reaches delivery, the work is

complete and there will only be a very small maintenance
staff remaining. However, in an embedded software develop-
ment project, we still observe the manpower to increase, peak,
and tail off during testing. The challenge was to modify (or
more accurately, to reinterpret) the Putnam model so that it
was suitable for modehng the real-time software development
process.

II. A REAL-TIME EMBEDDED COMPUTER APPLICATION

Fig. 2 shows the manpower curve for a project which delivered
a trainer/simulator for a sonar and fire control system. The
manpower included here is for the entire project from require-
ments specification through design, code, test, integration, and
delivery. Delivery constituted a complete working system with
a MTTF of more than seven days.

Fig. 2 is to be contrasted with Fig. 1. InFig. 1, the manpower
peak is at the first delivery, while in Fig. 2, the manpower peak
occurs at the time of the completion of the software design.

564

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 5, SEPTEMBER 1983

200

MAN MONTHS (COST TO DATE)

L 1

10

30

MONTHS

Fig. 3. Cumulative manpower data. This kind of plot is often preferred
by accounting departments. It is smoother than Fig. 2, but less useful.
It is much harder to predict the turnover and endpoints from this curve

than it is to predict from Fig. 2.

The curve remains Rayleigh shaped, however. We therefore
kept the mathematics of the Putnam model, and set about
reinterpreting the meaning of the parameters.

A. Management Aspects of the Curve

Just plotting the data is useful, providing an overall view of
the project. There is, of course, noise in the data, but all
significant fluctuations from smoothness reflect management
problems or decisions. For example, in Fig. 2, point (1) is
the first obvious irregularity. At this time the customer
stretched funding by several months. The customer was
thwarting the inclination of the project manager to build up
the staff. Point (2) is interesting. At the peak of production
one would not expect such dramatic variations in personnel.
The fluctuations were actually due to a combination of snow-
storms and the usual winter holidays.

At point (3) an interesting psychological trap develops—ag-
gravated by typical accounting methods. At this stage of the
project’s development, there are 18-20 engineers producing
code at a prodigious rate. Half the money is spent, and with
all these people on board, the money will run out very soon.
The combination of voluminous code and apparent running
out of money led management to cut back the manpower.
However, they did it too quickly.

The crisis is not even apparent when one plots the cumulative
cost as in Fig. 3. The cumulative plot smooths out all of the
interesting features. It is very difficult to predict anything from
this type of plot. A more controlled decline in manpower would
have avoided the subsequent mini-build-up which is shown in
Fig. 2 at point (4). In this project, all manpower demands were
filled on the basis of management requests, not Rayleigh curve
estimation.

A major success of applying the Rayleigh curve technique
comes as a result of identifying the curve peak. This can be
done quite accurately. Knowing that the peak occurs after
about 40 percent of the schedule gives the first good predic-
tion of the project completion date. It is more difficult to
project a completion date from the cumulative data of Fig. 3.
The cumulative plot smooths out the changes toward the end

of the project. Also, the point at which the cumulative curve
flattens out is difficult to predict.

The area under the curve represents the total number of man-
years expended. When multiplied by the average cost per man-
year, the area under the curve represents the cost of the job.
By manipulating the time of the peak and the size of the peak,
different costs are obtained.

If there s scatter in the manpower data, the peak may be
hard to identify. However, in that case, one can obtain a lower
bound on costs by assuming the smallest peak at the earliest
time, consistent with the data. This produces the minimum
cost.

Cumulative plotting of manpower data is not so useful. Man-
agement can easily fool themselves into thinking that the curve
will flatten at any time, whereas, the instantaneous plot of
Fig. 2 quickly shows a more correct view. The plotting of
instantaneous manpower versus time, instead of cumulative
money spent, is probably the single most valuable tool of this
entire methodology. It is simple and promotes straightforward
communication.

B. Mathematical Model

The Rayleigh distribution seems to fit a wide class of soft-
ware projects, both small and large. The model also applies
to business, real-time and embedded software. The Rayleigh
curve for manpower has the form

m(t)=2Kt2exp [_ t?]

ty 2t%

where m(¢) is the manpower as a function of time ¢. K is the
total area under the curve and represents the total number of
man-months for the project; ¢4 is the time to the manpower
peak. The logarithmic form is

t2
log (m/t?) =- 23 +log 2KtF).

Curves are hard to fit precisely—one prefers to fit to straight
lines. This is done in Fig. 4 which plots log (m/t?) against ¢*

WARBURTON: COSTS OF REAL-TIME SOFTWARE

565

-0.5

LOG (m/t)
»

SLOPE = tqy = 53 WEEKS
INT => K = 30 myr

I I
10k 15k
12

-3
(=]

MAN YRS (K)
B
o

20

Fig. 4. This figure shows the data from Fig. 2 plotted in logarithmic co-
ordinates. From the slope and intercept the values of K, the total
manpower, and the time of the manpower peak are determined. The
slope is consistent with a value of ¢4 = 53 weeks and the intercept with
a value of X =30 man-years. Both of these values are in agreement
with the actual project values.

WEEKS (tg)

% PROJECT COMPLETE

Fig. 5. Cost and schedule predictions. By using the data of Fig. 4 as it
becomes available, one can make incremental predictions of the com-
pletion date and the final cost. This figure shows four predictions of
both the cost and the schedule. Once the manpower has peaked, the
predictions become very reliable and converge to the actual values.

for the data of Fig. 2. The slope and intercept predict the
values K = 30 man-years and ¢4 = 53 weeks. The peak of Fig.
2 is consistent with a value of t4 = 52 weeks.

The fit to the data is reasonably good, although the early data
has considerable scatter. Also, fluctuations in this region are
magnified by the choice of variables: the (m/t?) in the y
direction and the 2 in the x direction. Both tend to expand
the plot for low ¢ values and compress it for high ¢ values.

The value of using the model in this way is in predicting proj-
ect completion dates, while the project is in progress. The
scatter in the early data makes predictions in the early phases
somewhat erratic. Fig. 5 shows the predictions for completion
date and total budget that one would have obtained at various
stages of the project. Notice that once the manpower peak is

identified, the projections converge to the actual values, and
become quite reliable.

One of the benefits of using the Putnam method is clearly
demonstrated here. It is very easy to pick out the manpower
peak for a project and then deduce the completion date. Ina
cumulative plot, however, it is very difficult to determine the
finishing date by projecting the flattening out of the manpower
curve. In fact, without using mathematics, it is much easier to
make projections from Fig. 2 than Fig. 3. This is intuitively
slightly strange since Fig. 3 is smoother. Fig. 3 smoothes away
the interesting effects.

One could try to determine the completion data by discover-
ing where the Rayleigh curve falls to zero. However, it ismuch
easier to project from the peak because of considerable noise

566

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 5, SEPTEMBER 1983

8 1s5F
]
b4
)
w12t
&
&
w o
) LAST
H DESIGN
a 6 REVIEW UNIT TEST
H FIRST SND Uit
2 AND 2 BUILD 4 Al
DESIGN CODE DELIVERYND
3r REVIEW STARTS
BUILD 1 BUILD 3
[+] L 1
JAN 1977 JUNE 1977 JAN 1978 JUNE 1978 JAN 1979 MAY 1979

Fig. 6. The milestones for a typical software project are shown overlaid
on the manpower curve. Knowing the place in time where these should
occur, one can assess the correctness of the schedule.

in the tail due to follow-on contracts and maintenance. Know-
ing that the peak occurs after 40 percent of the project, the
delivery date can be found quite accurately.

One caution about the logarithmic formulation should be
mentioned. There is usually considerable scatter in early data,
due to both systematic and random effects. The usual random
effects such as staff availability, Thanksgiving, and sick leave
are magnified because of the choice of variables, and the few
people on the project. With a little management thought, the
systematic effects can usually be discovered. Some examples
of the kinds of things to look for are variations due to customer
or management funding practices and inexact start dates.

C. Milestones—Avoiding the Pitfall

A pitfall in using the Putnam model is that a manager may
follow the curve and ignore the actual project status. There is
a temptation to plan a project and staff it according to a Ray-
leigh curve. One can imagine a staff build-up, reaching the peak,
and staffing down to zero only to find that the project is only
80 percent complete! The protection against this trap is to
match milestones with the-curve.
~ Fig. 6 shows the milestones for the project of Fig. 2. These
are appropriate to a software project developed in the modern
style. That is, top down design with reviews, structured code
with walks through, unit testing, builds, and strict configura-
tion management. Not all parts of the design were developed
together. Critical modules and major components were de-
signed first. This explains the milestones “first” and “last”
design reviews. Coding was begun only after approval at a
formal design review. However, some modules were in design
while others were being coded. With 18-20 engineers and
overlapping phases, strict configuration management and
formal review procedures were essential.

Comparison of projected and actual milestones has to be
done with intelligence. An example will illustrate the pitfalls.
The completion of the program design is usually a major mile-
stone. Unfortunately, there is practically no way to guarantee
a complete, self-consistent design.

A poor, incomplete design specification published on-time
to meet a milestone only pushes problems off to a later date.
Design work will be performed during the coding phase. Un-
fortunately, when the size of the design task is underestimated,
the code phase will also be underestimated. However, the
appearance is that the coding phase milestones are slipping.
The Rayleigh curve shows the magnification of the coding
phase manpower. A design which is incomplete by 10 percent
can cause the project to be late by 25 percent.

Hence, publication of a design specification just to meet a
milestone may put off the recognition of trouble until coding
milestones are not met. Instead of recognizing the problem
early, when it can be easily attacked, it has been postponed
until it can do considerably more damage. It is far better to
recognize that the design is incomplete and either reschedule
or adjust the project. At design time, it is still early enough
to present management with options. The Rayleigh curve can
be used to estimate the growth of the manpower requirements
and project the budget problems. At design time, there is time
to affect the implementation given the type of information
available from the model.

III. A SECOND CASE STUDY

Projects experiencing difficulties are seldom discussed in the
literature. Authors prefer to talk about their successes. How-
ever, there are lessons to be learned from problem projects.
In fact, such painful lessons may be of considerable value to
the community.

In this section, it is shown how the model can be used as a
prediction tool. Fig. 7 shows the manpower data collected for
another project. The data are plotted up to the point where
some concern was being expressed that the project was not
going as well as expected. The smooth curve is a Rayleigh
curve deduced from the data. It was not used by management
as a staffing curve. Staffing was done through the usual com-
bination of availability and demand.

The actual staff build-up was reasonable. However, at the
point at which the data stop, the project manager was still

WARBURTON: COSTS OF REAL-TIME SOFTWARE

567

500

400

300

200

MAN HOURS/WEEK

100

1 1

10 20 30 40

A
50 60 70

WEEKS

Fig. 7. Manpower data for a second real-time software project. The data
are shown up to the point where concern was being expressed that the
project was not on schedule. Predictions of final cost and schedule
from this data correctly showed the slippage and increase in the de-

livered amount of code.

asking for staff. The first indications of trouble were on the
horizon,? and an analysis of the project status was conducted.

The first step in the analysis was to obtain the manpower

data. After examining the data, it was not clear if the man-
power had peaked or not. The following approach was taken.
We assumed that the manpower peak was at the time when
the data stopped. If the peak were assumed to be any later,
the resulting project cost would be higher. Also, by examin-
ing the milestones completed, we saw that the project had
completed its design reviews but had not generated a build.
Therefore, everything suggested that the project should have
been around the manpower peak. The minimum cost to com-
plete was found by assuming the manpower data had peaked at
the latest value. The cost, schedule, and estimated source line
count were projected.
- The job was originally estimated to be a two-year task with
approximately 10K source lines. The most optimistic predic-
tions of the Putnam model showed a 6-9 month slip and a total
of 20-25K lines. No one had checked the source line count
since the original bid. (One group leader was found to be
rapidly approaching 10K lines.) These “theoretical” projec-
tions were ignored until a few months before the originally
scheduled delivery, when the actual status could not be denied.
At this point, a reorganization occurred and -a new cost to
complete was generated. '

The eventual costs and completion dates were consistent
with the predictions made using the Putnam model. The pre-
dictions were quite accurate enough to show the difference be-
tween the actual status and the hoped-for status.

When it is determined that a software project is going to be
late, the temptation is to put extra people on the job to finish
it quicker. Using the Putnam model, one can interpret that
situation as follows: putting extra people on the job makes the
peak higher and the job will therefore cost more. This suggests
that the size of the job was probably underestimated, and that

3At this point, staff grumbling was getting out of hand. There is a
gray area between “this milestone is difficult” and “this milestone is
impossible.” Management needs concrete evidence to recognize the
transition from the first to the second.

the actual job will follow a Rayleigh distribution with a higher
peak. The job will not finish sooner, but later. Thus we see
more evidence for Brooke’s Law—adding people to a late job
makes it later. The expectation, of course, is that adding people
will shorten the time to completion. This is only true if the
predicted and actual status are the same and the people are
added early enough to change to a new Rayleigh profile. The
usual situation is that the job is underestimated, making the
peak later and higher.

Current software technology efforts are directed towards
improving software design tools. It is recognized that the tech-
nical completeness and consistency of the eventual product de-
pends critically on having a good design. The Putnam model
provides a management tool analogous to design tools.

Management leverage, like technical leverage, is greatest early
on. The Putnam model, if used during the design phase, can
provide management benefits analogous to those found by
applying design tools. One should expect of management ex-
actly what one expects of a design, i.e., self-consistency and
completeness, only applied to milestones, staffing, and costs.

There are several lessons to be learned from this difficult ex-
perience. The first is that Rayleigh curve estimating can help
a manager assess the progress of a project. However, the applica-
tion of the model should be backed up by data and experience
on the project. The model can be used to obtain clues about
the status of the job. Management insight must then be used
to track down and resolve the problems and inconsistencies.

In the above case, the source line count was so high that it
triggered an investigation. The. trend there gave credence to
the schedule and cost slippages. Other project data and general
detective work showed the real status of the job.

Fig. 7 contains information on the responsiveness of manage-
ment. The data for this project suggest that the spending was
carefully adjusted so as to be “on target.” The underand over-
shoots represent management adjusting to pressures. The char-
acteristic time scale for these adjustments is 4-6 weeks. This
time scale is not a characteristic of the project, it probably
reflects monthly accounting reviews and the adjustment of the
personnel to the dollars scheduled in the reviews. The cost

568

was being adjusted independently of the technical progress
of the project.

IV. MoDEL EXTENSIONS

We have examined the cost and schedule predictions associ-
ated with the manpower curve. We now show how the model
is extended to include other parameters useful to a manager.

Putnam defines a quantity called the “difficulty” as follows:

difficulty D = K/t}, ()

where K is again the total manpower (cost) and ¢4 is the time
at which the manpower peaks. As an example, consider the
project shown in Fig. 2. There, K =30 man-years and ¢4 = one
year. The difficulty of that project is therefore 30. This value
for the “difficulty” turns out to be quite representative of me-
dium size real-time software projects. We now define a “pro-
ductivity” function P as follows:

_ total number of source lines

= . 3

total number of man-months ®)
This productivity function is an average value over the whole
project. Using data for a considerable number of projects,*
Putnam deduced the following realtionship between the pro-
ductivity P and the difficulty D:

P = constant D™2/3,

“

After substituting for the difficuly function, one obtains
an expression for the source lines, as follows:

S =c,K‘/3t3/3

)

where ¢; is a constant. This formula allows one to estimate
source lines from the manpower and schedule. Or, in the more
usual case, given a schedule and some estimate for the source
line count, one can estimate the cost.

The constant ¢, is called the “technology constant,” because
it seems to have increased as software projects have moved
from an assembly language, batch oriented approach to high-
level languages and on-line systems.

For the data in Fig. 2, the following values can be calculated:

difficulty = 30 a typical value for a new

real-time system

a typical value for a project
with design reviews, on-line
development, and structured
code.

technology constant = 8000

The treatment here is different from the original Putnam
model. We assumed that the above equations apply over the
entire life cycle, whereas Putnam applies them to the detail
design and code subcycle only. Furthermore, Putnam assumes
that the detail design and code subcycle peaks at a value of
t},/ /3. There is no rationale for this choice, although it is
mathematically convenient. We avoid this whole discussion by
applying (2) to (5) to the whole life cycle.

4See, for example, “Software data collection and analysis at RADC,”
Rome Air Development Center, Rome, NY, 1978.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 5, SEPTEMBER 1983

V. MANAGEMENT ASPECTS OF THE DIFFICULTY AND
TECHNOLOGY CONSTANTS

The claim has been made that the constant ¢, is quantized as
c¢; = 6000, 8000, 10000.

This assumption seems unrealistic. However, a range of
parameters can be associated with project types. We have

-gathered data that provides us with a range of difficulty values.

As part of a proposal, a manpower estimate is calculated. One
can usually characterize the difficulty from experience and
historical data. This leads to a range of values for the develop-
ment time. Because the difficulty is a steep function of time,
this analysis is extremely valuable. A risk analysis is performed
by varying the project parameters, and shows for a given proj-
ect how the risks are distributed among cost, schedule, or code
estimates.

Whereas we find the difficulty function is predictable, the
technology constant is more variable and not so reliable. How-
ever, the best method of use for these relations is via tradeoffs.
Often, one or another of the parameters is inconsistent. One
then has the task of adjusting the others until a consensus is
reached. The value of this process is not just in estimating
values for the project. By varying parameters, one obtains an
increased understanding and knowledge about the job at hand.

The process of adjusting and playing with the parameters
usually highlights the risk areas. Very often one hears a state-
ment such as “that instruction count looks low.” Using the
above techniques, one can begin to quantify such statements
and decide whether one’s intuition is correctly based.

VI. FUTURE DIRECTIONS

A major uncertainty associated with Rayleigh curve estima-
tion is that the formula is empirical—it has no physical or statis-
tical background. A formal derivation of the Rayleigh curve
with a prediction for the values of the parameters would lead
to a better understanding of the model.

There are several aspects of software methodology that one
would like to see addressed in the Putnam model. For example,
what is the effect on manpower curves of the present trend
toward more requirements and design analysis? Will the curve
remain Rayleigh shaped? If it does, software could cost less.

It might be suggested that the Rayleigh curve technique was
formulated using data from the 1970’s, before top-down de-
sign and structured coding were commonplace. Will the tech-
nique continue to be applicable as methods evolve? The answer
to this question seems to be “yes” since the project of Fig. 1
(an excellent fit to a Rayleigh curve) was completed with such
practices as multiple review cycles, structured code, walks
through, and module development folders. It appears, there-
fore, that Rayleigh modeling is an appropriate tool to apply
to modern software development.

VII. CONCLUSIONS

The Putnam model provides an effective management tool.
We have applied the model slightly differently from the standard
approach, accounting for the different staffing profile that we
apply to real-time software development.

One of the valuable aspects of the Rayleigh curve is the de-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 5, SEPTEMBER 1983

termination of the manpower peak. The ratio of manpower
peak to completion date is quite precise and is the best method
of determining the delivery data. Cumulative manpower plots
are particularly unsuited for any type of predictions, changing
most slowly at the time when one desires the most information.
We have shown how valuable management information can be
obtained by laying out the data in a systematic manner.

The manpower data by itself should not be used to drive the
project. The data are used for clues that point to the real status
and problems. The key to success in this aspect of modeling is
the establishment of reliable and identifiable milestones and an
understanding of their relationship to the overall project.

ACKNOWLEDGMENT

W. J. Wesner of Raytheon managed the project described in
Fig. 1. His contributions to the analysis of the data are grate-

569

fully acknowledged. The author would also like to thank the
referee for constructive suggestions.

Roger D. H. Warburton was born in Cardiff,
Wales. He received a degree in physics from
Sussex University, Sussex, England, and the
Ph.D. degree in physics from the University of
Pennsylvania, Philadelphia, where he studied
under a Thouron Scholarship.

After working at Raytheon, Portsmouth, RI,
for several years, he became Manager of Soft-
ware Technology, specializing in software cost
estimation, CAD tools for signal processing, and
factory test languages. He is currently Manager
of Operations for JAYCOR, Middletown, RI.

Analyzing Software Safety

NANCY G. LEVESON anDp PETER R. HARVEY

Abstract—With the increased use of software controls in critical real-
time applications, a new dimension has been introduced into software
reliability—the “cost” of errors. The problems of safety have become
critical as these applications have increasingly included areas where the
consequences of failure are serious and may involve grave dangers to
human life and property. This paper defines software safety and de-
scribes a technique called software fault tree analysis which can be used
to analyze a design as to its safety. The technique has been applied to
a program which controls the flight and telemetry for a University of
California spacecraft. A critical failure scenario was detected by the
technique which had not been revealed during substantial testing of the
program. Parts of this analysis are presented as an example of the use
of the technique and the results are discussed.

Index Terms—Fail-safe software, fault tree, real-time software, safety
verification, software reliability, software safety, software validation,
system safety.

Manuscript received July 30, 1982; revised January 20, 1983. This
work was supported in part by Contract 7-656146-T-DS with Hughes
Aircraft Company and by a joint grant of the University of California
MICRO Project and Hughes Aircraft Company. The project is receiv-
ing additional support from the System Development Corporation.

The authors are with the Department of Information and Computer
Science, University of California, Irvine, CA 92717.

INTRODUCTION

N RECENT YEARS, advances in computer technology have

gone hand in hand with the introduction of computer usage
in new application areas. The problems of safety have become
critical as these applications have increasingly included areas
where the consequences of failure are serious and may involve
grave dangers to human life and property. Computers currently
control reactions in nuclear power plants, track airplane posi-
tions in air traffic control systems, monitor patients in intensive
care units of hospitals, deal with the complexities of space
flight in aerospace programs, and control military and defense
systems.

There is growing concern about errors in these systems. Much
of the focus in software research has been on techniques to
eliminate errors prior to the operational use of the software
system [4]. For the most part, software errors have been re-
garded as a temporary problem which will disappear as soon as
adequate methodologies for program development and valida-
tion can be devised. But progress in developing these method-
ologies has been slow, and error-free software may not be a

0098-5589/83/0900-0569$01.00 © 1983 IEEE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manharaa.com

